Spectral difference between obelin and aequorin is determined by the residue in position 88.

Stepanyuk GA,1 Markova SV,1,2 Frank LA,1 Lee J,2 Vysotski ES1,2
1. Photobiology Lab, Institute of Biophysics SB RAS, Krasnoyarsk 660036, Russia
2. Dept of Biochemistry and Molecular Biology, University of Georgia, Athens 30602, USA

Bioluminescence of Ca2+-regulated photoproteins arises from chemical breakdown of "coelenterazine", an imidazolopyrazine derivative substituted by a hydroperoxy at the C2-position and tightly but non-covalently bound within the protein. Ca2+ binding initiates decarboxylation resulting in the excited state of the product, coelenteramide. The well-studied representatives are aequorin and obelin. The aequorin bioluminescence maximum is at 465 nm, whereas that of obelin is at longer wavelength, $\lambda_{\text{max}}=485$ nm. Unreacted photoproteins are hardly fluorescent but Ca2+-discharged aequorin has a strong fluorescence ($\lambda_{\text{max}}=465$ nm) coinciding with the bioluminescence spectrum, Ca2+-discharged obelin having green fluorescence with $\lambda_{\text{max}}=510$ nm. According to spatial structures there is only one remarkable difference between the two photoproteins in the nature of residues making up the substrate-binding site. In obelin Phe is found at position 88, whereas in aequorin the corresponded 82-position is occupied with Tyr, i.e. hydrogen-bonded with the oxygen atom of the 6-(p-hydroxy)-phenyl group of coelenterazine. To elucidate the influence of the residue in this position on spectral properties, two mutants were constructed: F88Y-obelin and the corresponding Y82F-aequorin. Both mutants show no change in specific activity versus the WT photoproteins. They mainly differ in light emission spectra. The obelin mutant shifts both bioluminescence ($\lambda_{\text{max}}=455$ nm) and fluorescence ($\lambda_{\text{max}}=488$ nm) to the blue, while the aequorin mutant emits green bioluminescence ($\lambda_{\text{max}}=501$ nm) and fluorescence ($\lambda_{\text{max}}=505$ nm). These results clearly indicate that the residue in this position controls the excited electronic energy level of coelenteramide. Work was supported grant 02-04-49419 of RFBR and Physical and Chemical Biology Program of RAS.